

Effective soil subsidence reduction of pealtlands by pressurized drainage in polder Spengen, the Neterlands

Jantine Hoekstra MSc. 19 February 2019

Location: polder Spengen, the Netherlands

Location: Topography

Topografische kaart Nederland (november 2015)

Location: Topography

Topografische kaart Nederland (november 2015)

Location: Topography

Topografische kaart Nederland (november 2015)

Location: Soil map

Location: Heightmap

Hoogtekaart (Actueel Hoogtebestand Nederland 3)

Goals of the pilot project

1. Apply new technique in practice

2. To quantify and qualify the effects of subsurface drainage (combined with pressurized drainage) on a broad range of environmental and agricultural aspects, such as:

- Groundwatertable
- Soil Subsidence
- Water quantity (inlet)
- Water quality
- Grass quality
- Bearing capacity field
- Meadow birds

Method: Pressurized submerged drainage (infiltration)

Pressure water reservoir, Even more constant groundwatertable

WATER INFILTREREN

- Dry period
- High water pressure
- Increase infiltration

WATER DRAINEREN

- Wet period
- Low water pressure
- Increase drainage

Method: Full automatic system

Groundwater observation well

Datacable

B061

Waterreservoir

61

PLC/Computer

Groundwatertable farmer van Herk (july 2016 - april 2018)

Groundwatertable farmer van Herk (july 2016 - april 2018)

Groundwatertable farmer van Herk (periode may 2018 - january 2019)

Groundwatertable farmer S. Scherpenzeel (period may 2018 - september 2018)

Groundwatertable farmer J. Scherpenzeel (period july 2016 - april 2018)

Groundwatertable farmer J. Scherpenzeel (period july 2016 - april 2018)

Groundwatertable farmer J. Scherpenzeel (period may 2018 - january 2019)

Method: Soil movement

Method: Soil movement

Conclusions

- Pressurized drainage successfully influenced groundwatertables during (extreme dry) summer 2018
- Groundwatertable remains between 30 and 50 cm below surface
- Soil conductivity limits "artificial" groundwater rise
- Prelimenary results look promising in reducing soil subsidence rate
- Widespread application limited by high costs technique, mainly because of power source and automatisation

Effective soil subsidence reduction of pealtlands by pressurized drainage in polder Spengen, the Neterlands

Thank you for your attention

Questions?