Pump regulated submerged drains to further diminish soil subsidence and C02-emission

Next step in applying submerged drains

Februari 19th, Idse Hoving, Jan van de Akker, Rob Hendriks, Karel van Houwelingen

Peat in The Netherlands

Agriculture 223.000 ha
Nature 67.000 ha
Total 290.000 ha

Characteristics farming on peat soil

- Peat soils in The Netherlands represent 19% of the dairy farms and 23% of the total agricultural grass area
- These soils are mainly situated in polders with a regulated (high) surface water level.
- Low bearing capacity of the grass sward
- Poor botanic composition of grass sward
- High density of ditches hampers parcelling

Watermanagement peat soils

- Compromise between reducing <u>soil subsidence</u> and providing sufficient <u>soil bearing capacity</u> of grass sward
- Regulation with ditch water level
 - High ditch water levels (20 cm below soil surface) for nature purposes and minimizing soil subsidence
 - `Low' ditch water level (60 cm below soil surface) to improve soil bearing capacity and productivity of dairy farms

Annual variation groundwater level

- Water transport is limited due low water conductivity
- This means varying groundwater levels
 - High groundwater levels at precipitation surplus
 - Low groundwater levels at evaporation surplus

Implementation of submerged drains

Submerged drains accelerate water transport and provide levelling groundwater levels

Field experiments and developing steps

Different projects on the hydrological and agricultural effects of application of 'submerged drains' during the last 14 years

- 1. Tests effects submerged drains at fixed 'low' and high ditch water level
- 2. Enlarging infiltration effects of submerged drains with dynamic ditch water level
- **3.** Submerged drains in combination with reservoir and pump to have more control on the water table

3. Submerged drains with reservoir and pump

- To enlarge water pressure difference between surface water and ground water
- Test: can we keep groundwater level constantly on 40 cm below soil surface at 'low' and high ditch water level

Construction

Research design

Main treatment

- High ditch water level of 55 cm below soil surface (2 plots)
- 'Low' ditch water level of 20 cm below soil surface (2 plots)

Sub treatment (1)

- No submerged drains
- Submerged drains without pump regulation
- Submerged drains with pump regulation
- Sub treatment (2)
 - No nitrogen fertilisation (N0)
 - Nitrogen fertilisation (N1)

Field experiment at high and low ditch level

Measurements

- Groundwater table
 - Manual weekly
 - Water pressure sensor high frequent
- Ditch water level
- Grass yield (2016-2017)
 - Duplicate treatments trial fields of 1,5 x 10 m
- Botanical composition
- Ground level
- Analysis N-total grass

Level management

- Reference monitoring well per object with pressure sensor;
- Additional manual measurements monitoring wells;
- Mean groundwater level high and low ditch water level;
- Target groundwater level was 35 à 40 cm -soil surface;
- Manual execution of the water level management based on weather forecast and current groundwater level

	Drainage Infiltration-1 reservoir level 10 cm below soil surface Infiltration-2 reservoir level equal to soil surface					
Current groundwater level (cm)	< 30	31-35	36-40	41-45	> 45	
Rainfall forecast day 1-3 (mm)						
0	Drainage	0	Infiltration-1	Infiltration-2	Infiltration-2	
0-10 mm	Drainage	Drainage	0	Infiltration-1	Infiltration-2	
10-25 mm	Drainage	Drainage	Drainage	0	Infiltration-1	
>25 mm	Drainage	Drainage	Drainage	Drainage	0	

Results 'low' ditch water level plot 16

Results high ditch water level plot 14

Comparison with application at other location

Quantity infiltration water

Quantity drainage water

	High ditch v	water level	Low ditch water level			
	(m3/ł	(m3/ha/d)		(m3/ha/d)		
	In	Out	In	Out		
max	22	11	68	15		
min	0	0	0	0		
Median	5	5	13	6		
Average	6	5	16	7		

19

Discussion

- Target level of 40 cm-mv was an empirically determined level, which applies to the relevant experimental plots
- For the optimization of the reduction of peat degradation and CO2 emission, the soil moisture condition should be the guiding principle
- Rainfall forecasts did not always come out, so that level changes sometimes were delayed
- During considerable precipitation peaks the groundwater level rose above the desired level, but the duration was much shorter than that of the underwater drains in the ditch.
- The permeability differed between and within plots. Is soil permeability determined properly? The drain distance for the ditch connected submerged drains should probably be smaller (4 m?).
- Inflow of contaminated water may also have been a problem.

Conclusions

- Pump controlled submerged drains have a clear effect
- Provides both extra infiltration and extra drainage
- Result is independent of the ditch water level
- Extra drainage seemed to give extra carrying capacity
- Potential reduction in soil surface fall is expected more than 50%
- The quantity of infiltration is 2.5 times higher at 'low' ditch levels than at a high ditch level. The quantity of drainage is almost equal
- Steering sharply on groundwater level is essential to reduce soil surface fall and CO2 emissions significantly
- Higher investment costs and application costs lower economic returns

Perspectives

- Submerged drains in combination with reservoir and pump makes it possible to control groundwater level more directly
- Independent from ditch water level
- Groundwater level should be leading instead of ditch water level
- Main benefit concerns increase of number of grazing days
- Main cost concerns electricity (regardless construction costs)
- Improved operation should cover higher costs for construction

Recommendations

- Placement of monitoring wells preferably between drain tubes at one third to half the width of a plot.
- Use multiple automatic pressure sensors per plot, so that observations remain available in the event of a malfunction
- The use of automatic pressure transmitters requires a good organization of data. This concerns identification of the sensors linked to a location in the field and insight into the observations of the sensor.
- In order to prevent loss of water to adjacent ditches during infiltration, the ditch water level should be set to the target groundwater level.
- A protocol should be made to identify permeability and to determine drain distance properly

Thank you for your attention!

Idse Hoving

Wageningen Livestock Research

Idse.hoving@wur.nl

+31317480365

