

Submerged drains and peatland water levels

Results from two years of testing in a fen and a bog site in Lower Saxony

Merten Minke, Heinrich Höper

Oldenburg, 19th February 2019

Why submerged drains?

- In Lower Saxony 0.2 Mha bogs and fens are drained for grassland and emit annually 5.4 Mt CO₂-eq. (21% of agriculture, 5.4 % of all sectors)
- Water levels 30 40 cm below surface are expected to reduce GHG emissions and allow for ongoing grassland management
- Such water levels are not possible by ditch blocking alone because of small water conductivity
- Submerged drains provide for direct water conducts from ditches into peatland

Hypothesis: Submerged drains support water regulation and help to keep summer peatland water levels high

Summer

Water moves faster into the site

Research sites

Fen - Hammelwarder Moor

0

earthyfied fen peat

moderately decomposed Phragmites peat (H5)

slightly decomposed Phragmites peat (H4) with silt kf 8-10 cm / day

slightly decomposed Phragmites peat (H4) with silt kf 1-2 cm / day

silt-clay lagoon sediment with Phragmites kf 1-2 cm / day

Bog - Ipweger Moor

Submerged drains

- diameter 8 cm
- depth below surface 70 cm
- distance between drains 5 m

Land surface at Ditch blocking is 8 cm below other treatments

Bog - Ipweger Moor, water levels

Bog - Ipweger Moor, water levels

Fen – Hammelwarder Moor

treatments

Fen - Hammelwarder Moor, water levels

Fen - Hammelwarder Moor, water levels

Peatland water levels

Summer 17 Winter 17/18 Summer 18

Ditch blocking

• Summer water levels decrease with distance to ditch

Submerged drains

• Reduced distance to drain, small WL gradient in bog, large in fen

Hydraulic head is related to Climatic water balance

Hydraulic head required to achive target summer peatland water levels

- CWB important for weir adjustment
- kf ≥ 10 cm/day is a minum in dry summers

Subsidence Bog – Ipweger Moor

July 2016 to December 2018

Treatment	Mean (cm)	10% quantile	90% quantile	Ν
Ditch blocking	5.7	0.8	12.6	44
Submerged drains	4.3	-0.6	7.9	46
Control	11.5	7.9	14.7	48

Landesamt für

Bergbau, Energie und Geologie

LBEG

Subsidence Fen – Hammelwarder Moor

July 2016 to January 2019

Treatment	Mean (cm)	10% quantile	90% quantile	N
Ditch blocking	7.8	3.5	11.6	45
Submerged drains	5.3	1.1	9.5	45
Control	7.9	4.3	10.6	45

Summary

- In the dry summer 2018 submerged drains provided for higher ground water levels as compared to ditch blocking and control.
- Submerged drains reduced subsidence; long term effects require further monitoring.
- Ditch blocking is an alternative, but too wet for farming in spring and dry in summer.
- Efficiency of submerged drains depends on saturated water conductivity of the peat. kf should be ≥ 10 cm/day
- CWB is an important driver of hydraulic head and useful for weir adjustment.
- Dry summers require high hydraulic heads (30 cm in the studied bog, 50 cm in the fen).
- Stable water levels of 30 cm below surface seem possible in average summers but require flat surface and good management of pumps, weirs and submerged drains.

