

Submerged drains in managed peat soils, effect on CO₂ emissions

MERIT VAN DEN BERG, STEFAN WEIDEVELD, JEROEN GEURTS, CHRISTIAN FRITZ

Drained peatlands

Research location: Friesland

Peat layer: 0.70-1.50 m Clay layer ~ 30 cm Clay carbon content ~30% Low hydraulic conductivity

Methods

Flux measurements:

- 4 locations: one field with submerged drains and one control field = 8 fields
 3 plots per field = 24 plots
- 18 measurement days per year, 3 light and 3 dark measurements per plot per day = 2592 measurement points /yr

Other measurements:

- Weather conditions
- Water table
- Field height
- And more....

Schematic overview carbon fluxes

Light measurement - dark measurement = GPP

GPP = light dependent (light response curve)

R_{eco} = temperature dependent (Lloyd-Taylor function)

Effect of SMD on groundwater table 2017

7-3-2019

Net effect SMD on CO₂ emission 2017

Influencing factors for CO₂ fluxes

Relation groundwater table and $\rm R_{eco}\,2017$

No clear relation between GWT and CO₂ emission in submerged drain fields.

In the control field an increase in CO_2 flux is visible with decrease of GWT.

Relation GWT 2017 vs 2018

Groundwater table (cm below surface)

Difference in GWT and CO₂ SMD vs controle

Relation temperature and $R_{eco} 2017$

All locations show a clear exponential relation between R_{eco} and soil temperature.

Relation $\mathrm{R}_{\mathrm{eco}}$ with groundwater table

Relation with temperature removed

SWAMPS CONFERENCE

Effect submerged drains in dry period

Example location 2

The CO_2 flux is relative low in the dry period. With a rain event the flux increases, especially in the control field.

Soil moisture in dry and wet conditions

From 50 cm depth, the water content hardly changed with fluctuating groundwater table.

Influence of groundwater level on field height 2017

Example location 3

There is around 10 cm difference within one year due to GWT fluctuation.

Conclusions

There was no difference in CO₂ emission found between submerged drain field and control fields in 2017.

Soil temperature appears to be the best explaining factor for seasonal variation in ecosystem respiration (R_{eco}) (not groundwater table).

Field level fluctuation within a year is a factor 10 higher than the expected subsidence due to peat oxidation.

Questions that follow

When would submerged drains work to reduce CO_2 ?

- How deep is oxygen intruding into the soil
- What is the relation between GWT \rightarrow soil moisture \rightarrow CO₂ flux?

On which time scale can soil subsidence be used as measure for CO₂? • How long does it take before hysteresis effect is gone?

Thank you for your attention!

